SULFA\textsc{Treat} HP utilizes the same basic principles as regular SULFA\textsc{Treat} but with improved reaction characteristics that allow the effective removal of hydrogen sulfide, methyl and ethyl mercaptans in a granular, fixed-bed process. The process utilizes proprietary iron compounds mixed with supplemental chemicals. The total load capacity of SULFA\textsc{Treat} HP is the same as for regular SULFA\textsc{Treat}. The following is based on our current experience with this process in the laboratory and field applications and should be used as a guide for the application of the product at this time.

Removal of H$_2$S in water-saturated gas streams
- A higher reaction constant can be used where the gas stream is fully saturated with water.
- Allows increased flow rates or improved removal rates with less contact time as compared to regular SULFA\textsc{Treat} where only H$_2$S removal is required.

$$\text{Fe} + \text{H}_2\text{S} \rightarrow \text{FeS}_2$$

(SULFA\textsc{Treat} Type) (pyrite)

Removal of H$_2$S in water-under-saturated gas streams
- Improved reaction characteristics of SULFA\textsc{Treat} HP allow this product to be used in less than fully water-saturated gas streams.
- Streams that are at borderline saturation can be treated without water injection at the vessel inlet.

Removal of methyl and ethyl mercaptans in fully water-saturated gas streams
- SULFA\textsc{Treat} HP will manageably react with methyl and ethyl mercaptans.
- Some reaction is observed with heavier mercaptans, but this cannot be reliably managed at this time.
- Resulting reaction of a combination of destruction and conversion on roughly a 50:50 basis.
- Conversion creates high molecular weight mono and di-sulfides that have a significantly reduced solubility and odor in gas and have shown a tendency to be further separated downstream with other liquids (water/liquid hydrocarbon), in a few cases.
- Total sulfur removal with higher levels of mercaptans, presence of heavier mercaptans, and/or of low levels of total sulfur in any form is the specification for treatment. Some other form of treatment, such as activated carbon, may be needed to polish or remove the remaining sulfur downstream of the SULFA\textsc{Treat} HP.
- Lowest maximum C1RSH and C2RSH outlet concentration that should be specified at this time should be 0.2 ppmv.
The Use of SULFA\textsc{TREAT} HP for the Removal of Hydrogen Sulfide and Light Mercaptans from Natural Gas and Vapor Streams

Application range (not limits)

\begin{tabular}{|l|c|c|}
\hline
Pressure & \text{-4 to 4,000 psig} & \text{-0.3 to 276 barg} \\
Temperature & \text{34° to 210°F} & \text{1° to 99°C} \\
Flow rate & \text{0.0005 to 80 MMscf/day} & \text{0.6 to 94,000 Nm3/hr} \\
H\textsubscript{2}S concentration & \text{5 to 50,000 ppmv} & \text{7.7 to 77,000 mg/m3} \\
H\textsubscript{2}S mass flow & \text{50 to 1,400 lb/day} & \text{23 to 640 kg/day} \\
\hline
\end{tabular}

Major applications

- Produced and associated gas
- Petrochemical
- Geothermal
- Chemical
- Processing
- Waste water
- Biogas

Availability

SULFA\textsc{TREAT} HP is available in 50-lb sacks (40 per pallet) and in 2,000-lb bulk bags. Full truckload orders (40,000 lb) and 20-ft overseas containers are shipped from the main warehouse near St. Louis, Missouri. Less-than-truckload orders may be economically shipped from more than a dozen conveniently located warehouses throughout the United States and Canada.

SULFA\textsc{TREAT}
A Business Unit of M-I \textsc{L.L.C.}
A Smith/Schlumberger Company
17998 Chesterfield Airport Road, #215
Chesterfield, Missouri 63005
Tel: 636-532-2189
Toll-free: 800-726-7687
Fax: 636-532-2764
E-mail: info@SULFA\textsc{TREAT}.com

The data included herein is supplied for information purposes only, and neither M-I nor SULFA\textsc{TREAT} makes any guarantees, warranties, either expressed or implied, with respect to the accuracy and use of this data. All product warranties and guarantees shall be governed by the Standard Terms of Sale and the Standard Terms of Equipment Rental.